對于二階濾波器都可以表示成如下的標準形式,這個標準形式對于下面討論二階濾波器的響應是很有理解作用的,其中式中ω0為無阻尼自然頻率,N(s)為一個m≤2的多項式。
1.png
H(s)的分母函數有兩個極點可以計算出來為
2.png
關于ξ的函數,根軌跡如下圖所示,其中有下面的四種情況
1.當ξ>1,極點為實數并且為負數,自然響應是由兩個衰減的指數項組成,這別稱作為過阻尼。
2.當0<ξ<1,極點為一對共軛復根,可以表示為p1,2=-ξω0±jω0sqr(1-ξ^2),這些極點都位于左半平面,此時稱為欠阻尼,欠阻尼狀態也是二階濾波器中經常要保證的狀態。
3.當ξ=0,p1,2=±jω0這表明這兩個極點恰好都在虛軸上,自然響應式一個恒定不變的未受衰減的正弦信號,他的頻率為ω0這也是ω0名稱的由來。
4.當ξ<0,極點位于右半平面,響應為發散的,因此濾波器為了保持穩定必須有ξ>0.
3.png
s→jω0可以得到如下的頻率響應,其中的Q值將會在濾波器的特性中起到關鍵性的作用。
4.png
二階響應,可以高頻漸進線的陡峭程度增加了兩倍斜率,還能對w/w0=1附近頻域的幅度形狀調節增加了自由度,在實際應用中,Q值的范圍為0.5~100,對于不同的Q值幅度如下圖所示,對于低Q值而言,從一條漸近線到另一條的過度時平緩的,對于高Q值,在w/w0=1的附近頻帶內有|Hlp|>1,這種現象稱為峰化?梢宰C明,在出現峰化之前,Q的最大值是Q=0.707.他響應曲線稱為最大平伏或者稱為巴特沃茲響應,在巴特沃茲響應中w0的意義與一階響應情況一致,都代表了-3dB頻率,也稱作截止頻率。
5.jpg
N(s)對于濾波器的影響是濾波器的性質,下面的幾個式子分別為幾種不同特性的濾波器的表達式
低通濾波器
6.png
高通濾波器
7.png
帶通濾波器
8.png
帶阻濾波器
9.png
全通濾波器